CosineTransformer#

class CosineTransformer(_output_convert='auto')[source]#

Cosine transformation.

This is a wrapper around numpy’s cosine function (see numpy.cos).

Attributes
is_fitted

Whether fit has been called.

See also

numpy.cos

Examples

>>> from sktime.transformations.series.cos import CosineTransformer
>>> from sktime.datasets import load_airline
>>> y = load_airline()
>>> transformer = CosineTransformer()
>>> y_hat = transformer.fit_transform(y)

Methods

check_is_fitted()

Check if the estimator has been fitted.

clone()

Obtain a clone of the object with same hyper-parameters.

clone_tags(estimator[, tag_names])

clone/mirror tags from another estimator as dynamic override.

create_test_instance([parameter_set])

Construct Estimator instance if possible.

create_test_instances_and_names([parameter_set])

Create list of all test instances and a list of names for them.

fit(X[, y])

Fit transformer to X, optionally to y.

fit_transform(X[, y])

Fit to data, then transform it.

get_class_tag(tag_name[, tag_value_default])

Get tag value from estimator class (only class tags).

get_class_tags()

Get class tags from estimator class and all its parent classes.

get_fitted_params()

Get fitted parameters.

get_param_defaults()

Get parameter defaults for the object.

get_param_names()

Get parameter names for the object.

get_params([deep])

Get parameters for this estimator.

get_tag(tag_name[, tag_value_default, …])

Get tag value from estimator class and dynamic tag overrides.

get_tags()

Get tags from estimator class and dynamic tag overrides.

get_test_params([parameter_set])

Return testing parameter settings for the estimator.

inverse_transform(X[, y])

Inverse transform X and return an inverse transformed version.

is_composite()

Check if the object is composite.

reset()

Reset the object to a clean post-init state.

set_params(**params)

Set the parameters of this object.

set_tags(**tag_dict)

Set dynamic tags to given values.

transform(X[, y])

Transform X and return a transformed version.

update(X[, y, update_params])

Update transformer with X, optionally y.

check_is_fitted()[source]#

Check if the estimator has been fitted.

Raises
NotFittedError

If the estimator has not been fitted yet.

clone()[source]#

Obtain a clone of the object with same hyper-parameters.

A clone is a different object without shared references, in post-init state. This function is equivalent to returning sklearn.clone of self. Equal in value to type(self)(**self.get_params(deep=False)).

Returns
instance of type(self), clone of self (see above)
clone_tags(estimator, tag_names=None)[source]#

clone/mirror tags from another estimator as dynamic override.

Parameters
estimatorestimator inheriting from :class:BaseEstimator
tag_namesstr or list of str, default = None

Names of tags to clone. If None then all tags in estimator are used as tag_names.

Returns
Self

Reference to self.

Notes

Changes object state by setting tag values in tag_set from estimator as dynamic tags in self.

classmethod create_test_instance(parameter_set='default')[source]#

Construct Estimator instance if possible.

Parameters
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns
instanceinstance of the class with default parameters

Notes

get_test_params can return dict or list of dict. This function takes first or single dict that get_test_params returns, and constructs the object with that.

classmethod create_test_instances_and_names(parameter_set='default')[source]#

Create list of all test instances and a list of names for them.

Parameters
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns
objslist of instances of cls

i-th instance is cls(**cls.get_test_params()[i])

nameslist of str, same length as objs

i-th element is name of i-th instance of obj in tests convention is {cls.__name__}-{i} if more than one instance otherwise {cls.__name__}

parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

fit(X, y=None)[source]#

Fit transformer to X, optionally to y.

State change:

Changes state to “fitted”.

Writes to self: _is_fitted : flag is set to True. _X : X, coerced copy of X, if remember_data tag is True

possibly coerced to inner type or update_data compatible type by reference, when possible

model attributes (ending in “_”) : dependent on estimator

Parameters
XSeries or Panel, any supported mtype
Data to fit transform to, of python type as follows:

Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame,

nested pd.DataFrame, or pd.DataFrame in long/wide format

subject to sktime mtype format specifications, for further details see

examples/AA_datatypes_and_datasets.ipynb

ySeries or Panel, default=None

Additional data, e.g., labels for transformation

Returns
selfa fitted instance of the estimator
fit_transform(X, y=None)[source]#

Fit to data, then transform it.

Fits the transformer to X and y and returns a transformed version of X.

State change:

Changes state to “fitted”.

Writes to self: _is_fitted : flag is set to True. _X : X, coerced copy of X, if remember_data tag is True

possibly coerced to inner type or update_data compatible type by reference, when possible

model attributes (ending in “_”) : dependent on estimator

Parameters
XSeries or Panel, any supported mtype
Data to be transformed, of python type as follows:

Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame,

nested pd.DataFrame, or pd.DataFrame in long/wide format

subject to sktime mtype format specifications, for further details see

examples/AA_datatypes_and_datasets.ipynb

ySeries or Panel, default=None

Additional data, e.g., labels for transformation

Returns
transformed version of X
type depends on type of X and scitype:transform-output tag:
X | tf-output | type of return |

|----------|————–|------------------------| | Series | Primitives | pd.DataFrame (1-row) | | Panel | Primitives | pd.DataFrame | | Series | Series | Series | | Panel | Series | Panel | | Series | Panel | Panel |

instances in return correspond to instances in X
combinations not in the table are currently not supported
Explicitly, with examples:
if X is Series (e.g., pd.DataFrame) and transform-output is Series

then the return is a single Series of the same mtype Example: detrending a single series

if X is Panel (e.g., pd-multiindex) and transform-output is Series
then the return is Panel with same number of instances as X

(the transformer is applied to each input Series instance)

Example: all series in the panel are detrended individually

if X is Series or Panel and transform-output is Primitives

then the return is pd.DataFrame with as many rows as instances in X Example: i-th row of the return has mean and variance of the i-th series

if X is Series and transform-output is Panel

then the return is a Panel object of type pd-multiindex Example: i-th instance of the output is the i-th window running over X

classmethod get_class_tag(tag_name, tag_value_default=None)[source]#

Get tag value from estimator class (only class tags).

Parameters
tag_namestr

Name of tag value.

tag_value_defaultany type

Default/fallback value if tag is not found.

Returns
tag_value

Value of the tag_name tag in self. If not found, returns tag_value_default.

classmethod get_class_tags()[source]#

Get class tags from estimator class and all its parent classes.

Returns
collected_tagsdict

Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance. NOT overridden by dynamic tags set by set_tags or mirror_tags.

get_fitted_params()[source]#

Get fitted parameters.

Overrides BaseEstimator default in case of vectorization.

State required:

Requires state to be “fitted”.

Returns
fitted_paramsdict of fitted parameters, keys are str names of parameters

parameters of components are indexed as [componentname]__[paramname]

classmethod get_param_defaults()[source]#

Get parameter defaults for the object.

Returns
default_dict: dict with str keys

keys are all parameters of cls that have a default defined in __init__ values are the defaults, as defined in __init__

classmethod get_param_names()[source]#

Get parameter names for the object.

Returns
param_names: list of str, alphabetically sorted list of parameter names of cls
get_params(deep=True)[source]#

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsdict

Parameter names mapped to their values.

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#

Get tag value from estimator class and dynamic tag overrides.

Parameters
tag_namestr

Name of tag to be retrieved

tag_value_defaultany type, optional; default=None

Default/fallback value if tag is not found

raise_errorbool

whether a ValueError is raised when the tag is not found

Returns
tag_value

Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.

Raises
ValueError if raise_error is True i.e. if tag_name is not in self.get_tags(
).keys()
get_tags()[source]#

Get tags from estimator class and dynamic tag overrides.

Returns
collected_tagsdict

Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance and then any overrides and new tags from _tags_dynamic object attribute.

classmethod get_test_params(parameter_set='default')[source]#

Return testing parameter settings for the estimator.

Parameters
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns
paramsdict or list of dict, default = {}

Parameters to create testing instances of the class Each dict are parameters to construct an “interesting” test instance, i.e., MyClass(**params) or MyClass(**params[i]) creates a valid test instance. create_test_instance uses the first (or only) dictionary in params

inverse_transform(X, y=None)[source]#

Inverse transform X and return an inverse transformed version.

Currently it is assumed that only transformers with tags

“scitype:transform-input”=”Series”, “scitype:transform-output”=”Series”,

have an inverse_transform.

State required:

Requires state to be “fitted”.

Accesses in self: _is_fitted : must be True _X : optionally accessed, only available if remember_data tag is True fitted model attributes (ending in “_”) : accessed by _inverse_transform

Parameters
XSeries or Panel, any supported mtype
Data to be inverse transformed, of python type as follows:

Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame,

nested pd.DataFrame, or pd.DataFrame in long/wide format

subject to sktime mtype format specifications, for further details see

examples/AA_datatypes_and_datasets.ipynb

ySeries or Panel, default=None

Additional data, e.g., labels for transformation

Returns
inverse transformed version of X

of the same type as X, and conforming to mtype format specifications

is_composite()[source]#

Check if the object is composite.

A composite object is an object which contains objects, as parameters. Called on an instance, since this may differ by instance.

Returns
composite: bool, whether self contains a parameter which is BaseObject
property is_fitted[source]#

Whether fit has been called.

reset()[source]#

Reset the object to a clean post-init state.

Equivalent to sklearn.clone but overwrites self. After self.reset() call, self is equal in value to type(self)(**self.get_params(deep=False))

Detail behaviour: removes any object attributes, except:

hyper-parameters = arguments of __init__ object attributes containing double-underscores, i.e., the string “__”

runs __init__ with current values of hyper-parameters (result of get_params)

Not affected by the reset are: object attributes containing double-underscores class and object methods, class attributes

set_params(**params)[source]#

Set the parameters of this object.

The method works on simple estimators as well as on nested objects. The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

BaseObject parameters

Returns
selfreference to self (after parameters have been set)
set_tags(**tag_dict)[source]#

Set dynamic tags to given values.

Parameters
tag_dictdict

Dictionary of tag name : tag value pairs.

Returns
Self

Reference to self.

Notes

Changes object state by settting tag values in tag_dict as dynamic tags in self.

transform(X, y=None)[source]#

Transform X and return a transformed version.

State required:

Requires state to be “fitted”.

Accesses in self: _is_fitted : must be True _X : optionally accessed, only available if remember_data tag is True fitted model attributes (ending in “_”) : must be set, accessed by _transform

Parameters
XSeries or Panel, any supported mtype
Data to be transformed, of python type as follows:

Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame,

nested pd.DataFrame, or pd.DataFrame in long/wide format

subject to sktime mtype format specifications, for further details see

examples/AA_datatypes_and_datasets.ipynb

ySeries or Panel, default=None

Additional data, e.g., labels for transformation

Returns
transformed version of X
type depends on type of X and scitype:transform-output tag:
| transform | |
X | -output | type of return |

|----------|————–|------------------------| | Series | Primitives | pd.DataFrame (1-row) | | Panel | Primitives | pd.DataFrame | | Series | Series | Series | | Panel | Series | Panel | | Series | Panel | Panel |

instances in return correspond to instances in X
combinations not in the table are currently not supported
Explicitly, with examples:
if X is Series (e.g., pd.DataFrame) and transform-output is Series

then the return is a single Series of the same mtype Example: detrending a single series

if X is Panel (e.g., pd-multiindex) and transform-output is Series
then the return is Panel with same number of instances as X

(the transformer is applied to each input Series instance)

Example: all series in the panel are detrended individually

if X is Series or Panel and transform-output is Primitives

then the return is pd.DataFrame with as many rows as instances in X Example: i-th row of the return has mean and variance of the i-th series

if X is Series and transform-output is Panel

then the return is a Panel object of type pd-multiindex Example: i-th instance of the output is the i-th window running over X

update(X, y=None, update_params=True)[source]#

Update transformer with X, optionally y.

State required:

Requires state to be “fitted”.

Accesses in self: _is_fitted : must be True _X : accessed by _update and by update_data, if remember_data tag is True fitted model attributes (ending in “_”) : must be set, accessed by _update

Writes to self: _X : updated by values in X, via update_data, if remember_data tag is True fitted model attributes (ending in “_”) : only if update_params=True

type and nature of update are dependent on estimator

Parameters
XSeries or Panel, any supported mtype
Data to fit transform to, of python type as follows:

Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame,

nested pd.DataFrame, or pd.DataFrame in long/wide format

subject to sktime mtype format specifications, for further details see

examples/AA_datatypes_and_datasets.ipynb

ySeries or Panel, default=None

Additional data, e.g., labels for transformation

update_paramsbool, default=True

whether the model is updated. Yes if true, if false, simply skips call. argument exists for compatibility with forecasting module.

Returns
selfa fitted instance of the estimator