ColumnTransformer#

class ColumnTransformer(transformers, remainder='drop', sparse_threshold=0.3, n_jobs=1, transformer_weights=None, preserve_dataframe=True)[source]#

Column-wise application of transformers.

Applies transformations to columns of an array or pandas DataFrame. Simply takes the column transformer from sklearn and adds capability to handle pandas dataframe.

This estimator allows different columns or column subsets of the input to be transformed separately and the features generated by each transformer will be concatenated to form a single feature space. This is useful for heterogeneous or columnar data, to combine several feature extraction mechanisms or transformations into a single transformer.

Parameters
transformerslist of tuples

List of (name, transformer, column(s)) tuples specifying the transformer objects to be applied to subsets of the data. name : string

Like in Pipeline and FeatureUnion, this allows the transformer and its parameters to be set using set_params and searched in grid search.

transformerestimator or {“passthrough”, “drop”}

Estimator must support fit and transform. Special-cased strings “drop” and “passthrough” are accepted as well, to indicate to drop the columns or to pass them through untransformed, respectively.

column(s) : str or int, array-like of string or int, slice, boolean mask array or callable

Indexes the data on its second axis. Integers are interpreted as positional columns, while strings can reference DataFrame columns by name. A scalar string or int should be used where transformer expects X to be a 1d array-like (vector), otherwise a 2d array will be passed to the transformer. A callable is passed the input data X and can return any of the above.

remainder{“drop”, “passthrough”} or estimator, default “drop”

By default, only the specified columns in transformations are transformed and combined in the output, and the non-specified columns are dropped. (default of "drop"). By specifying remainder="passthrough", all remaining columns that were not specified in transformations will be automatically passed through. This subset of columns is concatenated with the output of the transformations. By setting remainder to be an estimator, the remaining non-specified columns will use the remainder estimator. The estimator must support fit and transform.

sparse_thresholdfloat, default = 0.3

If the output of the different transformations contains sparse matrices, these will be stacked as a sparse matrix if the overall density is lower than this value. Use sparse_threshold=0 to always return dense. When the transformed output consists of all dense data, the stacked result will be dense, and this keyword will be ignored.

n_jobsint or None, optional (default=None)

Number of jobs to run in parallel. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors.

transformer_weightsdict, optional

Multiplicative weights for features per transformer. The output of the transformer is multiplied by these weights. Keys are transformer names, values the weights.

preserve_dataframeboolean

If True, pandas dataframe is returned. If False, numpy array is returned.

Attributes
transformers_list

The collection of fitted transformations as tuples of (name, fitted_transformer, column). fitted_transformer can be an estimator, “drop”, or “passthrough”. In case there were no columns selected, this will be the unfitted transformer. If there are remaining columns, the final element is a tuple of the form: (“remainder”, transformer, remaining_columns) corresponding to the remainder parameter. If there are remaining columns, then len(transformers_)==len(transformations)+1, otherwise len(transformers_)==len(transformations).

named_transformers_Bunch object, a dictionary with attribute access

Access the fitted transformer by name.

sparse_output_bool

Boolean flag indicating wether the output of transform is a sparse matrix or a dense numpy array, which depends on the output of the individual transformations and the sparse_threshold keyword.

Methods

check_is_fitted()

Check if the estimator has been fitted.

clone()

Obtain a clone of the object with same hyper-parameters.

clone_tags(estimator[, tag_names])

clone/mirror tags from another estimator as dynamic override.

create_test_instance([parameter_set])

Construct Estimator instance if possible.

create_test_instances_and_names([parameter_set])

Create list of all test instances and a list of names for them.

fit(X[, y])

Fit the transformer.

fit_transform(X[, y])

Fit and transform, shorthand.

get_class_tag(tag_name[, tag_value_default])

Get tag value from estimator class (only class tags).

get_class_tags()

Get class tags from estimator class and all its parent classes.

get_feature_names()

DEPRECATED: get_feature_names is deprecated in 1.0 and will be removed in 1.2.

get_feature_names_out([input_features])

Get output feature names for transformation.

get_fitted_params()

Get fitted parameters.

get_param_defaults()

Get parameter defaults for the object.

get_param_names()

Get parameter names for the object.

get_params([deep])

Get parameters for this estimator.

get_tag(tag_name[, tag_value_default, …])

Get tag value from estimator class and dynamic tag overrides.

get_tags()

Get tags from estimator class and dynamic tag overrides.

get_test_params()

Return testing parameter settings for the estimator.

inverse_transform(X[, y])

Inverse transform X and return an inverse transformed version.

is_composite()

Check if the object is composite.

load_from_path(serial)

Load object from file location.

load_from_serial(serial)

Load object from serialized memory container.

reset()

Reset the object to a clean post-init state.

save([path])

Save serialized self to bytes-like object or to (.zip) file.

set_params(**kwargs)

Set the parameters of this estimator.

set_tags(**tag_dict)

Set dynamic tags to given values.

transform(X[, y])

Transform the data.

update(X[, y, update_params])

Update transformer with X, optionally y.

classmethod get_test_params()[source]#

Return testing parameter settings for the estimator.

Returns
paramsdict or list of dict, default = {}

Parameters to create testing instances of the class Each dict are parameters to construct an “interesting” test instance, i.e., MyClass(**params) or MyClass(**params[i]) creates a valid test instance. create_test_instance uses the first (or only) dictionary in params

fit(X, y=None)[source]#

Fit the transformer.

transform(X, y=None)[source]#

Transform the data.

fit_transform(X, y=None)[source]#

Fit and transform, shorthand.

check_is_fitted()[source]#

Check if the estimator has been fitted.

Raises
NotFittedError

If the estimator has not been fitted yet.

clone()[source]#

Obtain a clone of the object with same hyper-parameters.

A clone is a different object without shared references, in post-init state. This function is equivalent to returning sklearn.clone of self. Equal in value to type(self)(**self.get_params(deep=False)).

Returns
instance of type(self), clone of self (see above)
clone_tags(estimator, tag_names=None)[source]#

clone/mirror tags from another estimator as dynamic override.

Parameters
estimatorestimator inheriting from :class:BaseEstimator
tag_namesstr or list of str, default = None

Names of tags to clone. If None then all tags in estimator are used as tag_names.

Returns
Self

Reference to self.

Notes

Changes object state by setting tag values in tag_set from estimator as dynamic tags in self.

classmethod create_test_instance(parameter_set='default')[source]#

Construct Estimator instance if possible.

Parameters
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns
instanceinstance of the class with default parameters

Notes

get_test_params can return dict or list of dict. This function takes first or single dict that get_test_params returns, and constructs the object with that.

classmethod create_test_instances_and_names(parameter_set='default')[source]#

Create list of all test instances and a list of names for them.

Parameters
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns
objslist of instances of cls

i-th instance is cls(**cls.get_test_params()[i])

nameslist of str, same length as objs

i-th element is name of i-th instance of obj in tests convention is {cls.__name__}-{i} if more than one instance otherwise {cls.__name__}

parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

classmethod get_class_tag(tag_name, tag_value_default=None)[source]#

Get tag value from estimator class (only class tags).

Parameters
tag_namestr

Name of tag value.

tag_value_defaultany type

Default/fallback value if tag is not found.

Returns
tag_value

Value of the tag_name tag in self. If not found, returns tag_value_default.

classmethod get_class_tags()[source]#

Get class tags from estimator class and all its parent classes.

Returns
collected_tagsdict

Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance. NOT overridden by dynamic tags set by set_tags or mirror_tags.

get_feature_names()[source]#

DEPRECATED: get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.

Get feature names from all transformers.

Returns
feature_nameslist of strings

Names of the features produced by transform.

get_feature_names_out(input_features=None)[source]#

Get output feature names for transformation.

Parameters
input_featuresarray-like of str or None, default=None

Input features.

  • If input_features is None, then feature_names_in_ is used as feature names in. If feature_names_in_ is not defined, then the following input feature names are generated: [“x0”, “x1”, …, “x(n_features_in_ - 1)”].

  • If input_features is an array-like, then input_features must match feature_names_in_ if feature_names_in_ is defined.

Returns
feature_names_outndarray of str objects

Transformed feature names.

get_fitted_params()[source]#

Get fitted parameters.

Overrides BaseEstimator default in case of vectorization.

State required:

Requires state to be “fitted”.

Returns
fitted_paramsdict of fitted parameters, keys are str names of parameters

parameters of components are indexed as [componentname]__[paramname]

classmethod get_param_defaults()[source]#

Get parameter defaults for the object.

Returns
default_dict: dict with str keys

keys are all parameters of cls that have a default defined in __init__ values are the defaults, as defined in __init__

classmethod get_param_names()[source]#

Get parameter names for the object.

Returns
param_names: list of str, alphabetically sorted list of parameter names of cls
get_params(deep=True)[source]#

Get parameters for this estimator.

Returns the parameters given in the constructor as well as the estimators contained within the transformers of the ColumnTransformer.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsdict

Parameter names mapped to their values.

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#

Get tag value from estimator class and dynamic tag overrides.

Parameters
tag_namestr

Name of tag to be retrieved

tag_value_defaultany type, optional; default=None

Default/fallback value if tag is not found

raise_errorbool

whether a ValueError is raised when the tag is not found

Returns
tag_value

Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.

Raises
ValueError if raise_error is True i.e. if tag_name is not in self.get_tags(
).keys()
get_tags()[source]#

Get tags from estimator class and dynamic tag overrides.

Returns
collected_tagsdict

Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance and then any overrides and new tags from _tags_dynamic object attribute.

inverse_transform(X, y=None)[source]#

Inverse transform X and return an inverse transformed version.

Currently it is assumed that only transformers with tags

“scitype:transform-input”=”Series”, “scitype:transform-output”=”Series”,

have an inverse_transform.

State required:

Requires state to be “fitted”.

Accesses in self: _is_fitted : must be True _X : optionally accessed, only available if remember_data tag is True fitted model attributes (ending in “_”) : accessed by _inverse_transform

Parameters
XSeries or Panel, any supported mtype
Data to be inverse transformed, of python type as follows:

Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame,

nested pd.DataFrame, or pd.DataFrame in long/wide format

subject to sktime mtype format specifications, for further details see

examples/AA_datatypes_and_datasets.ipynb

ySeries or Panel, default=None

Additional data, e.g., labels for transformation

Returns
inverse transformed version of X

of the same type as X, and conforming to mtype format specifications

is_composite()[source]#

Check if the object is composite.

A composite object is an object which contains objects, as parameters. Called on an instance, since this may differ by instance.

Returns
composite: bool, whether self contains a parameter which is BaseObject
property is_fitted[source]#

Whether fit has been called.

classmethod load_from_path(serial)[source]#

Load object from file location.

Parameters
serialresult of ZipFile(path).open(“object)
Returns
deserialized self resulting in output at path, of cls.save(path)
classmethod load_from_serial(serial)[source]#

Load object from serialized memory container.

Parameters
serial1st element of output of cls.save(None)
Returns
deserialized self resulting in output serial, of cls.save(None)
property named_transformers_[source]#

Access the fitted transformer by name.

Read-only attribute to access any transformer by given name. Keys are transformer names and values are the fitted transformer objects.

reset()[source]#

Reset the object to a clean post-init state.

Equivalent to sklearn.clone but overwrites self. After self.reset() call, self is equal in value to type(self)(**self.get_params(deep=False))

Detail behaviour: removes any object attributes, except:

hyper-parameters = arguments of __init__ object attributes containing double-underscores, i.e., the string “__”

runs __init__ with current values of hyper-parameters (result of get_params)

Not affected by the reset are: object attributes containing double-underscores class and object methods, class attributes

save(path=None)[source]#

Save serialized self to bytes-like object or to (.zip) file.

Behaviour: if path is None, returns an in-memory serialized self if path is a file location, stores self at that location as a zip file

saved files are zip files with following contents: _metadata - contains class of self, i.e., type(self) _obj - serialized self. This class uses the default serialization (pickle).

Parameters
pathNone or file location (str or Path)

if None, self is saved to an in-memory object if file location, self is saved to that file location. If:

path=”estimator” then a zip file estimator.zip will be made at cwd. path=”/home/stored/estimator” then a zip file estimator.zip will be stored in /home/stored/.

Returns
if path is None - in-memory serialized self
if path is file location - ZipFile with reference to the file
set_params(**kwargs)[source]#

Set the parameters of this estimator.

Valid parameter keys can be listed with get_params(). Note that you can directly set the parameters of the estimators contained in transformers of ColumnTransformer.

Parameters
**kwargsdict

Estimator parameters.

Returns
selfColumnTransformer

This estimator.

set_tags(**tag_dict)[source]#

Set dynamic tags to given values.

Parameters
tag_dictdict

Dictionary of tag name : tag value pairs.

Returns
Self

Reference to self.

Notes

Changes object state by settting tag values in tag_dict as dynamic tags in self.

update(X, y=None, update_params=True)[source]#

Update transformer with X, optionally y.

State required:

Requires state to be “fitted”.

Accesses in self: _is_fitted : must be True _X : accessed by _update and by update_data, if remember_data tag is True fitted model attributes (ending in “_”) : must be set, accessed by _update

Writes to self: _X : updated by values in X, via update_data, if remember_data tag is True fitted model attributes (ending in “_”) : only if update_params=True

type and nature of update are dependent on estimator

Parameters
XSeries or Panel, any supported mtype
Data to fit transform to, of python type as follows:

Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame,

nested pd.DataFrame, or pd.DataFrame in long/wide format

subject to sktime mtype format specifications, for further details see

examples/AA_datatypes_and_datasets.ipynb

ySeries or Panel, default=None

Additional data, e.g., labels for transformation

update_paramsbool, default=True

whether the model is updated. Yes if true, if false, simply skips call. argument exists for compatibility with forecasting module.

Returns
selfa fitted instance of the estimator