Time series annotation#

The sktime.annotation module contains algorithms and tools for time series annotation tasks, like anomaly/outlier detection, and time series segmentation.

Time Series Segmentation#

ClaSPSegmentation([period_length, n_cps, …])

ClaSP (Classification Score Profile) Segmentation.

GaussianHMM(n_components, covariance_type, …)

Hidden Markov Model with Gaussian emissions.

GMMHMM(n_components, n_mix, min_covar, …)

Hidden Markov Model with Gaussian mixture emissions.

GreedyGaussianSegmentation(k_max, lamb, …)

Greedy Gaussian Segmentation Estimator.

HMM(emission_funcs, transition_prob_mat, …)

Implements a simple HMM fitted with Viterbi algorithm.

InformationGainSegmentation(k_max, step)

Information Gain based Temporal Segmentation (IGTS) Estimator.

STRAY(alpha, k, knn_algorithm, p, …)

STRAY: robust anomaly detection in data streams with concept drift.

Adapters#

PyODAnnotator(estimator[, fmt, labels])

Transformer that applies outlier detector from pyOD.

Data Generation#

Synthetic data generating functions.